Wine Quality prediction project code
Code of Project for Jupyter notebook: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm import SVR from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score raw_data = r"Set your csv file path" data = pd.read_csv(raw_data, delimiter=';') print("Dataset loaded successfully!") print(data.head()) # Check for missing values print("Missing values:\n", data.isnull().sum()) # Remove duplicates data = data.drop_duplicates() print("Data shape after removing duplicates:", data.shape) # Separate features and target X = data.drop('quality', axis=1) y = data['quality'] # Feature scaling scaler = StandardScaler() X_scaled = scaler.fit_transform(X) X_train, X_test, y_train, y_test = train_test_split( X_scaled, y, test_size=0...